CLINICAL APPROACHES: REVIEW

Selected fascial aspects of osteopathic practice

Paolo Tozzi, Bsc (Hons) Ost, DO, PTa,b,c,*

a Centro di Ricerche Olistiche per la Medicina Osteopatica e Naturale, C.R.O.M.O.N., Via Pasquale Fiore 18, Rome, Italy
b Osteopathie Schule Deutschland, Mexikoring 19, D-22297 Hamburg, Germany
c Dresden International University, Freiberger Str. 37, D-01067 Dresden, Germany

Received 6 November 2011; received in revised form 31 January 2012; accepted 5 February 2012

KEYWORDS
Fascia; Myofascial system; Fascial innervation; Fascial contraction; Osteopathy; Somatic dysfunction; Osteopathic approaches/principles; Osteopathic manipulation; Fascial techniques/manipulation; Fascial/osteopathic treatment

Summary Fascia is a connective tissue organised as a three-dimensional network that surrounds, supports, suspends, protects, connects and divides muscular, skeletal and visceral components of the body. Studies suggest that fascia reorganises itself along the lines of tension imposed or expressed in the body, and in ways that may cause repercussions of fascial restriction that are body-wide. This may potentially create stress on any structures enveloped by fascia itself, with consequent mechanical and physiological effects. From an osteopathic perspective, fascial techniques aim to release such tensions, decrease pain and restore function. The proposed mechanism for fascial techniques is based on various studies that looked at the plastic, viscoelastic and piezoelectric properties of connective tissue. This review explores some of the features described above, together with evidence supporting the therapeutic efficacy of fascial manipulation, offering a selected overview of the fascial component in osteopathic assessment and treatment.

© 2012 Elsevier Ltd. All rights reserved.

Recent fascial insights

Fascial contributions to biomechanics

The ubiquitous distribution of fascia permeates the human body, forming a continuous matrix of structural support, serving different functions. It has been traditionally considered as an inert structure, with passive roles such as cushioning system, providing muscular attachments and investing different body structures at various depths (Standring, 2004; Williams, 1995), being generally considered less important than the tissues with which it is...